Spatial soil moisture scaling structure during Soil Moisture Experiment 2005
نویسندگان
چکیده
Soil moisture state and variability control many hydrological and ecological processes as well as exchanges of energy and water between the land surface and the atmosphere. However, its state and variability are poorly understood at spatial scales larger than the fields (i.e. 1 km2) as well as the ability to extrapolate field scale to larger spatial scales. This study investigates soil moisture profiles, their spatial organization, and physical drivers of variability within the Walnut Creek watershed, Iowa, during Soil Moisture Experiment 2005 and relates the watershed scale findings to previous field-scale results. For all depths, the watershed soil moisture variability was negatively correlated with the watershed mean soil moisture and followed an exponential relationship that was nearly identical to that for field scales. This relationship differed during drying and wetting. While the overall time stability characteristics were improved with observation depth, the relatively wet and dry locations were consistent for all depths. The most time stable locations, capturing the mean soil moisture of the watershed within š0Ð9% volumetric soil moisture, were typically found on hill slopes regardless of vegetation type. These mild slope locations consistently preserve the time stability patterns from field to watershed scales. Soil properties also appear to impact stability but the findings are sensitive to local variations that may not be well defined by existing soil maps. Copyright 2010 John Wiley & Sons, Ltd.
منابع مشابه
Downscaling of remotely sensed soil moisture with a modified fractal interpolation method using contraction mapping and ancillary data
Previous work showed that remotely sensed soil moisture fields exhibit multiscaling and multifractal behavior varying with the scales of observations and hydrometeorological forcing (Remote Sens. Environ. 81 (2002) 1). Specifically, it was determined that this multiscaling behavior is consistent with the scaling of soil hydraulic properties and vegetation cover, while the multifractal behavior ...
متن کاملModeling and assimilation of root zone soil moisture using remote sensing observations in Walnut Gulch Watershed during SMEX04
Soil moisture status in the root zone is an important component of the water cycle at all spatial scales (e.g., point, field, catchment, watershed, and region). In this study, the spatio-temporal evolution of root zone soil moisture of the Walnut Gulch Experimental Watershed (WGEW) in Arizona was investigated during the Soil Moisture Experiment 2004 (SMEX04). Root zone soil moisture was estimat...
متن کاملValidation of a τ-ω model with Soil Moisture Active Passive Experiment (SMAPEx) data sets in Australia
There is a strong demand for soil moisture information in establishing efficient irrigation scheduling, climate change prediction, and sustainable land and water management. However, such data are not readily available with an appropriate accuracy or spatial and temporal resolution. Addressing the need for soil moisture at high resolution globally, the European Space Agency (ESA) has developed ...
متن کاملScaling information from ENVISAT ASAR data for downscaling of scatterometer derived soil moisture estimates to 1 km resolution
Soil moisture information is an important factor in the fields of hydrology, meteorology and climatology. For hydrological applications, soil moisture data with a spatial resolution of 1 km is often requested. Current remote sensing methods are limited to a spacial resolution of 25–50 km. This study was motivated by the need to improve the resolution of soil moisture information. The aim was to...
متن کاملA downscaling method for distributing surface soil moisture within a microwave pixel: application to the Monsoon ’90 data
A downscaling method of the microwave surface soil moisture is applied to the PBMR data collected during the Monsoon ’90 experiment. The downscaling method requires (1) the coarse resolution microwave observation (2) the distribution at fine scale of soil temperature and (3) the distribution at fine scale of the surface conditions composed of atmospheric forcing and the parameters involved in t...
متن کامل